The IFM has a substantial list of supplements that have anti-viral properties. Here is the link:
https://www.ifm.org/news-insights/functional-medicine-approach-covid-19-additional-research-nutraceuticals-botanicals/
I have reproduced some of the information here. Omitted are any suggestions that are not vetted with what I consider adequate research. I also added olive leaf extract at the bottom of the IFM list.
To view Dr. Carter's supplement recommendations, please go here...
Background and Introduction
Health professionals and the public must be well informed about the SARS-CoV-2 virus, the disease it causes (COVID-19), and how it spreads. This information is readily available and not within the scope of this document. At this time, there are no specific vaccines or uniformly successful treatments for COVID-19. In this context of insufficient evidence, the scope of this document will be to assess the scientific plausibility of promising prevention approaches and therapeutic (nutraceutical and botanical) interventions and then to offer clinical recommendations. This article is part one of a series. Click here to view part two.
With respect to interventions, the practice of Functional Medicine emphasizes the primacy of safety, validity, and effectiveness. In the novel context of COVID-19, validity in the form of published evidence is lacking. Therefore, “validity” relies upon inferences from the mechanisms of action of individual agents and/or published outcomes data supporting their mitigating effects on illness from other viral strains. Likewise, data for the “effectiveness” of interventions targeting the viral mechanisms of COVID-19 are nascent and rapidly emerging. In this context, the following recommendations represent the Functional Medicine approach to the COVID-19 crisis:
Adherence to all health recommendations from official sources to decrease viral transmission.
Optimizing modifiable lifestyle factors in order to improve overall immune function (an introductory document on boosting immunity is available here). This should reduce progression from colonization to illness.
Personalized consideration of therapeutic agents that may:
Favorably modulate cellular defense and repair mechanisms.
Favorably modulate viral-induced pathological cellular processes.
Promote viral eradication or inactivation.
Mitigate collateral damage from other therapeutic agents.
Promote resolution of collateral damage and restoration of function.
Treatment of confirmed COVID-19 illness (as per conventional standards and practice):
May reduce the severity and duration of acute symptoms and complications.
May support recovery and reduce long-term morbidity and sequelae
Note: All supplements are available through Fullscript
MUSHROOMS
Various mushrooms species have been shown to possess broad immunomodulatory effects. They possess multiple mechanisms of action, including increasing the number of circulating B cells,5 increasing gut immunity,20 stimulating host immunity,21 activating innate immune cells,22 and increasing cytotoxic activity of NK cells.23
BERBERINE
Berberine is an alkaloid that is found in the roots, rhizomes, and stem bark of various plants, including goldenseal, goldthread, and Oregon grape. Berberine has been shown to have anti-viral activity across a broad range of viral targets.90-95 Berberine also activates 5′ AMP-activated protein kinase (AMPK), 96,97 which is directly anti-inflammatory. Berberine’s anti-inflammatory effects also include suppression of inhibition of IkB kinase and downregulation of NFkB, IL-1alpha, and TNF-alpha.98 Berberine also acts to lower blood glucose,99 thus helping with furin inhibition, as well as preserving ACE2 receptors, possibly through aldose reductase inhibition.
MELATONIN
Melatonin has been shown to have an inhibitory effect on the NLRP3 inflammasome.138 This has not gone unnoticed by the COVID-19 research community, with two recent published papers proposing the use of melatonin as a therapeutic agent in the treatment of patients with COVID-19.139,140
QUERCETIN
Quercetin has been shown to have antiviral effects against both RNA (e.g., influenza and coronavirus) and DNA viruses (e.g., herpesvirus). Quercetin has a pleiotropic role as an antioxidant and anti-inflammatory, modulating signaling pathways that are associated with post-transcriptional modulators affecting post-viral healing.94
VITAMIN D
Activated vitamin D,1,25(OH) D, a steroid hormone, is an immune system modulator that reduces the expression of inflammatory cytokines and increases macrophage function. Vitamin D also stimulates the expression of potent antimicrobial peptides (AMPs), which exist in neutrophils, monocytes, natural killer cells, and epithelial cells of the respiratory tract.31 Vitamin D increases anti-pathogen peptides through defensins and has a dual effect due to suppressing superinfection. Evidence suggests vitamin D supplementation may prevent upper respiratory infections.32 However, there is some controversy as to whether it should be used and the laboratory value that should be achieved. Research suggests that concerns about vitamin D (increased IL-1beta in cell culture) are not seen clinically. The guidance we suggest is that a laboratory range of >50 and < 80ng/mL serum 25-hydroxy vitamin D may help to mitigate morbidity from COVID-19 infection.
ZINC
Zinc contributes to immune defense by supporting various cellular functions of both the innate and adaptive immune system. There is also evidence that it suppresses viral attachment and replication. Zinc deficiency is common, especially in those populations most at risk for severe COVID-19 infections, and is challenging to accurately diagnosis with laboratory measures. Supplementation with zinc is supported by evidence that it both prevents viral infections and reduces their severity and duration. Moreover, it has been shown to reduce the risk of lower respiratory infection, which may be of particular significance in the context of COVID-19.
VITAMIN A - Best from Cod Liver Oil
Vitamin A is a micronutrient that is crucial for maintaining vision, promoting growth and development, and protecting epithelium and mucus integrity in the body. Vitamin A is known as an anti-inflammation vitamin because of its critical role in enhancing immune function. Vitamin A is involved in the development of the immune system and plays regulatory roles in cellular immune responses and humoral immune processes through the modulation of T helper cells, sIgA, and cytokine production. Vitamin A has demonstrated a therapeutic effect in the treatment of various infectious diseases.64
VITAMIN C
Vitamin C contributes to immune defense by supporting various cellular functions of both the innate and adaptive immune system. Vitamin C accumulates in phagocytic cells, such as neutrophils, and can enhance chemotaxis, phagocytosis, generation of reactive oxygen species, and ultimately microbial killing. Supplementation with vitamin C appears to be able to both prevent and treat respiratory and systemic infections.78 Vitamin C has been used in hospital ICUs to treat COVID-19 infection.
Not on the IFM list:
Olive Leaf Extract
Olive leaf extract is a supplement that is derived from the olive leaf, which contains bioactive compounds that has many researched health benefits. The extract contains a wide variety of compounds which work synergistically to deliver therapeutic actions. ([i],[ii])
In vitro and animal studies show that olive leaf extract has some potential activity against the influenza virus ([iii]) Research suggests that olive leaf extract may reduce the infectivity and inhibit the replication of viruses that cause colds, influenza and lower respiratory tract infections.
Olive leaf extract has been shown to stimulate phagocytosis - the ingestion of bacteria or other material by phagocytes – which may enhance the body’s response to a viral infection. Gargling olive leaf tea may alleviate symptoms of a sore throat – potentially due to a reduction of inflammation and viral infectivity.
Importantly, an olive leaf extract study on upper respiratory illness showed a 28% reduction in sick days. ([iv]) Severe viral infections like the common Flu and CoVid 19 cause illness and death through the respiratory pathway.
Olive Leaf Extract safety, dosage, and side effects: Regulatory bodies across the globe have published olive leaf extract monographs that discuss safety and tolerability of the product. ([v],[vi])
For general use: Traditionally, olive leaf extract was used over a period of 2 – 4 weeks.
For use as a diuretic: Occasional use is recommended, as required for symptom relief.
It is always important to note, that if symptoms persist for longer then one week during the use of the product, a qualified healthcare professional should be consulted.
No serious adverse effects have been reported in clinical studies involving olive leaf extract. Allergic reactions are possible in people who have an allergy to plants of the Oleaceae family. Some reports of rhinitis or bronchial asthma have been reported (frequency is unknown).
Here are videos explaining Olives and Olive Leaf: https://youtu.be/abIR3sVKtVk, https://www.youtube.com/watch?v=i2zZ7mpsZ0Q
Here is information on Oliverex from Biocidin, with their recommended dosing suggestion:
[i] Barbara B, Toietta G, Maggio R, et al. Effects of olive-derived oleuropein on human health. Int J Mol Sci. 2014;15(10):18508–24. [ii] Vogel P, Machado I, Garavaglia J, et al. Polyphenol benefits of olive leaf (Olea europaea L.) to human health. Nutr Hosp. 2015;31(3):1427–33. [iii] Roxas M. Jurenka J. Colds and Influenza: A review of diagnosis and conventional, botanical and nutritional considerations. Alt Med Rev. 2007.2(1):25-48. [iv] Somerville V, Moore R, Braakhuis A. The Effect of Olive Leaf Extract on Upper Respiratory Illness in High School Athletes: A Randomised Control Trial. Nutrients. 2019;11(2):358. Published 2019 Feb 9. doi:10.3390/nu11020358 [v] Perrinjaquet-Moccetti T, Schmidlin C, et al. Food supplementation with an olive (Olea europaea L.) leaf extract reduces blood pressure in borderline hypertensive monozygotic twins. Phytother Res. 2008 Sep;22(9):1239-42. [vi] Susalit E, Agus N, Tjandrawinata R, et al. Olive (Olea europaea) leaf extract effective in patients with stage-1 hypertension: comparison with captopril. Phytomedicine. 2011 Feb 15;18(4):251-8.
REFERENCES for IFM Supplement Recommendations:
1) Fischer WC, Black RE. Zinc and the risk for infectious disease. Annu Rev Nutr. 2004;24:255-275. doi:10.1146/annurev.nutr.23.011702.073054
2) Fraker PJ, King LE, Laakko T, Vollmer TL. The dynamic link between the integrity of the immune system and zinc status. J Nutr. 2000;130(5S Suppl):1399S-1406S. doi:10.1093/jn/130.5.1399S
3) Shankar AH, Prasad AS. Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr. 1998;68(2 Suppl):447S-463S. doi:10.1093/ajcn/68.2.447S
4) Gao H, Dai W, Zhao L, Min J, Wang F. The role of zinc and zinc homeostasis in macrophage function. J Immunol Res. 2018;2018:6872621 doi:10.1155/2018/6872621
5) Meydani SN, Barnett JB, Dallal GE, et al. Serum zinc and pneumonia in nursing home elderly. Am J Clin Nutr. 2007;86(4):1167-1173. doi:10.1093/ajcn/86.4.1167
6) Barnett JB, Dao MC, Hamer DH, et al. Effect of zinc supplementation on serum zinc concentration and T cell proliferation in nursing home elderly: a randomized, double-blind, placebo-controlled trial. Am J Clin Nutr. 2016;103(3):942-951. doi:10.3945/ajcn.115.115188
7) Maares M, Haase H. Zinc and immunity: an essential interrelation. Arch Biochem Biophys. 2016;611:58-65. doi:10.1016/j.abb.2016.03.022
8) te Velthuis AJW, van den Worm SHE, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog. 2010;6(11):e1001176. doi:10.1371/journal.ppat.1001176
9) Acevedo-Murillo JA, García León ML, Firo-Reyes V, Santiago-Cordova JL, Gonzalez-Rodriguez AP, Wong-Chew RM. Zinc supplementation promotes a Th1 response and improves clinical symptoms in fewer hours in children with pneumonia younger than 5 years old. A randomized controlled clinical trial. Front Pediatr. 2019;7:431. doi:10.3389/fped.2019.00431
10) Finzi E. Treatment of SARS-CoV-2 with high dose oral zinc salts: a report on four patients. Int J Infect Dis. 2020;99:307-309. doi:10.1016/j.ijid.2020.06.00
11) Rerksuppaphol S, Rerksuppaphol L. A randomized controlled trial of zinc supplementation in the treatment of acute respiratory tract infection in Thai children. Pediatr Rep. 2019;11(2):7954. doi:10.4081/pr.2019.7954
12) King JC, Brown KH, Gibson RS, et al. Biomarkers of nutrition for development (BOND)-zinc review. J Nutr. 2015;146(4):858S-885S. doi:10.3945/jn.115.220079
13) Baum MK, Lai S, Sales S, Page JB, Campa A. Randomized, controlled clinical trial of zinc supplementation to prevent immunological failure in HIV-infected adults. Clin Infect Dis. 2010;50(12):1653-1660. doi:10.1086/652864
14) Contreras-Martínez H, Duque-Molina M, Vásquez-Trespalacios EM, Sánchez-Garzón J. Effect of zinc on immune recovery in HIV patients. Medellín 2013. Randomized controlled trial. CES Medicina. 2017;31(1):3-13. doi:10.21615/cesmedicina.31.1.1
15) Porter RS, Bode RF. A review of the antiviral properties of black elder (Sambucus nigra L.) products. Phytother Res. 2017;31(4):533-554. doi:10.1002/ptr.5782
16) Chen C, Zuckerman DM, Brantley S, et al. Sambucus nigra extracts inhibit infectious bronchitis virus at an early point during replication. BMC Vet Res. 2014;10:24. doi:10.1186/1746-6148-10-24
17) Barak V, Halperin T, Kalickman I. The effect of Sambucol, a black elderberry-based, natural product, on the production of human cytokines: I. inflammatory cytokines. Eur Cytokine Netw. 2001;12(2):290-296.
18) Barak V, Birkenfeld S, Halperin T, Kalickman I. The effect of herbal remedies on the production of human inflammatory and anti-inflammatory cytokines. Isr Med Assoc J. 2002;4(11 Suppl):919-922.
19) Therapeutic Research Center. Natural Medicines Database: Elderberry. https://naturalmedicines.therapeuticresearch.com/databases/food,-herbs-supplements/professional.aspx?productid=434#adverseEvents. Accessed March 30, 2020.
20) Ulbricht C, Basch E, Cheung L, et al. An evidence-based systematic review of elderberry and elderflower (Sambucus nigra) by the Natural Standard Research Collaboration. J Diet Suppl. 2014;11(1):80-120. doi:10.3109/19390211.2013.859852
21) Frank T, Janssen M, Netzet G, Christian B, Bitsch I, Netzel M. Absorption and excretion of elderberry (Sambucus nigra L.) anthocyanins in healthy humans. Methods Find Exp Clin Pharmacol. 2007;29(8):525-533. doi:10.1358/mf.2007.29.8.1116309
22) Badescu M, Badulescu O, Badescu L, Ciocoiu M. Effects of Sambucus nigra and Aronia melanocarpa extracts on immune system disorders within diabetes mellitus. Pharm Biol. 2015;53(4):533-539. doi:10.3109/13880209.2014.931441
23) Fallah AA, Sarmast E, Fatehi P, Jafari T. Impact of dietary anthocyanins on systemic and vascular inflammation: systematic review and meta-analysis on randomised clinical trials. Food Chem Toxicol. 2020;135:110922. doi:10.1016/j.fct.2019.110922
24) Li S, Wu B, Fu W, Reddivari L. The anti-inflammatory effects of dietary anthocyanins against ulcerative colitis. Int J Mol Sci. 2019;20(10):2588. doi:10.3390/ijms20102588
25) Zakay-Rones Z, Thom E, Wollan T, Wadstein J. Randomized study of the efficacy and safety of oral elderberry extract in the treatment of influenza A and B virus infections. J Int Med Res. 2004;32(2):132-140. doi:10.1177/147323000403200205
26) Zakay-Rones Z, Varsano N, Zlotnik M, et al. Inhibition of several strains of influenza virus in vitro and reduction of symptoms by an elderberry extract (Sambucus nigra L.) during an outbreak of influenza B Panama. J Altern Complement Med. 1995;1(4):361-369. doi:10.1089/acm.1995.1.361
27) Tiralongo E, Wee SS, Lea RA. Elderberry supplementation reduces cold duration and symptoms in air-travellers: a randomized, double-blind placebo-controlled clinical trial. Nutrients. 2016;8(4):182. doi:10.3390/nu8040182
28) Elderberry for influenza. Med Lett Drugs Ther. 2019;61(1566):32. https://secure.medicalletter.org/w1566f.
29) Hawkins J, Baker C, Cherry L, Dunne E. Black elderberry (Sambucus nigra) supplementation effectively treats upper respiratory symptoms: a meta-analysis of randomized, controlled clinical trials. Complement Ther Med. 2019;42:361-365. doi:10.1016/j.ctim.2018.12.004
30) Curtis PJ, Kroon PA, Hollands WJ, et al. Cardiovascular disease risk biomarkers and liver and kidney function are not altered in postmenopausal women after ingesting an elderberry extract rich in anthocyanins for 12 weeks. J Nutr. 2009;139(12):2266-2271. doi:10.3945/jn.109.113126
31) Mawson AR. Role of fat-soluble vitamins A and D in the pathogenesis of influenza: a new perspective. Int Sch Res Notices. 2013;2013:246737. doi:10.5402/2013/246737
32) Martineau AR, Jolliffe DA, Greenberg L, et al. Vitamin D supplementation to prevent acute respiratory infections: individual participant data meta-analysis. Health Technol Assess. 2019;23(2):1-44. doi:10.3310/hta23020
33) Zhou J, Du J, Huang L, Wang Y, Shi Y, Lin H. Preventive effects of vitamin D on seasonal influenza A in infants: multicenter, randomized, open, controlled clinical trial. Pediatr Infect Dis J. 2018;37(8):749-754. doi:10.1097/INF.0000000000001890
34) Tzilas V, Bouros E, Barbayianni I, et al. Vitamin D prevents experimental lung fibrosis and predicts survival in patients with idiopathic pulmonary fibrosis. Pulm Pharmacol Ther. 2019;55:17-24. doi:10.1016/j.pupt.2019.01.003
35) Ricca C, Aillon A, Viano M, Bergandi L, Aldieri E, Silvagno F. Vitamin D inhibits the epithelial-mesenchymal transition by a negative feedback regulation of TGF-? activity. J Steroid Biochem Mol Biol. 2019;187:97-105. doi:10.1016/j.jsbmb.2018.11.006
36) Fischer KD, Agrawal DK. Vitamin D regulating TGF-? induced epithelial-mesenchymal transition [published correction appears in Respir Res. 2015;16:139]. Respir Res. 2014;15:146. doi:10.1186/s12931-014-0146-6
37) Schrumpf JA, Ninaber DK, van der Does AM, Hiemstra PS. TGF-?1 impairs vitamin D-induced and constitutive airway epithelial host defense mechanisms. J Innate Immun. 2020;12(1):74-89. doi:10.1159/000497415
38) Liu RM, Gaston Pravia KA. Oxidative stress and glutathione in TGF-beta-mediated fibrogenesis. Free Radic Biol Med. 2010;48(1):1-15. doi:10.1016/j.freeradbiomed.2009.09.026
39) Lu L, Lu Q, Chen W, Li J, Li C, Zheng Z. Vitamin D3 protects against diabetic retinopathy by inhibiting high-glucose-induced activation of the ROS/TXNIP/NLRP3 inflammasome pathway. J Diabetes Res. 2018;2018:8193523. doi:10.1155/2018/8193523
40) Rao Z, Chen X, Wu J, et al. Vitamin D receptor inhibits NLRP3 activation by impeding its BRCC3-mediated deubiquitination. Front Immunol. 2019;10:2783. doi:10.3389/fimmu.2019.02783
41) Hewison M. Vitamin D and immune function: an overview. Proc Nutr Soc. 2012;71(1):50-61. doi:10.1017/S0029665111001650
42) Fitch N, Becker AB, HayGlass KT. Vitamin D [1,25(OH)2D3] differentially regulates human innate cytokine responses to bacterial versus viral pattern recognition receptor stimuli. J Immunol. 2016;196(7):2965-2972. doi:10.4049/jimmunol.1500460
43) Zdrenghea MT, Makrinioti H, Bagacean C, Bush A, Johnston SL, Stanciu LA. Vitamin D modulation of innate immune responses to respiratory viral infections. Rev Med Virol. 2017;27(1). doi:10.1002/rmv.1909
44) Verway M, Bouttier M, Wang TT, et al. Vitamin D induces interleukin-1? expression: paracrine macrophage epithelial signaling controls M. tuberculosis infection. PLoS Pathog. 2013;9(6):e1003407. doi:10.1371/journal.ppat.1003407
45) Tulk SE, Liao KC, Muruve DA, Li Y, Beck PL, MacDonald JA. Vitamin D3 metabolites enhance the NLRP3-dependent secretion of IL-1? from human THP-1 monocytic cells. J Cell Biochem. 2015;116(5):711-720. doi:10.1002/jcb.24985
46) Lee MT, Kattan M, Fennoy I, et al. Randomized phase 2 trial of monthly vitamin D to prevent respiratory complications in children with sickle cell disease. Blood Adv. 2018;2(9):969-978. doi:10.1182/bloodadvances.2017013979
47) Autier P, Mullie P, Macacu A, et al. Effect of vitamin D supplementation on non-skeletal disorders: a systematic review of meta-analyses and randomised trials. Lancet Diabetes Endocrinol. 2017;5(12):986-1004. doi:10.1016/S2213-8587(17)30357-1
48) Sluyter JD, Camargo CA, Waayer D, et al. Effect of monthly, high-dose, long-term vitamin D on lung function: a randomized controlled trial. Nutrients. 2017;9(12):E1353. doi:10.3390/nu9121353
49) Turin A, Bax JJ, Doukas D, et al. Interactions among vitamin D, atrial fibrillation, and the renin-angiotensin-aldosterone system. Am J Cardiol. 2018;122(5):780-784. doi:10.1016/j.amjcard.2018.05.013
50) Zaheer S, Taquechel K, Brown JM, Adler GK, Williams JS, Vaidya A. A randomized intervention study to evaluate the effect of calcitriol therapy on the renin-angiotensin system in diabetes. J Renin Angiotensin Aldosterone Syst. 2018;19(1):1470320317754178. doi:10.1177/1470320317754178
51) Cremer A, Tambosco C, Corcuff JB, et al. Investigating the association of vitamin D with blood pressure and the renin-angiotensin-aldosterone system in hypertensive subjects: a cross-sectional prospective study. J Hum Hypertens. 2018;32(2):114-121. doi:10.1038/s41371-017-0005-2
52) Zittermann A, Ernst JB, Prokop S, et al. Effects of vitamin D supplementation on renin and aldosterone concentrations in patients with advanced heart failure: the EVITA trial. Int J Endocrinol. 2018;2018:5015417. doi:10.1155/2018/5015417
53) Yang P, Gu H, Zhao Z, et al. Angiotensin-converting enzyme 2 (ACE2) mediates influenza H7N9 virus-induced acute lung injury. Sci Rep. 2014;4:7027. doi:10.1038/srep07027
54) Xu J, Yang J, Chen J, Luo Q, Zhang Q, Zhang H. Vitamin D alleviates lipopolysaccharide-induced acute lung injury via regulation of the renin-angiotensin system. Mol Med Rep. 2017;16(5):7432-7438. doi:10.3892/mmr.2017.7546
55) Scragg R. The vitamin D assessment (ViDA) study – design and main findings. J Steroid Biochem Mol Biol. 2020;198:105562. doi:10.1016/j.jsbmb.2019.105562
56) Camargo CA Jr, Ganmaa D, Frazier AL, et al. Randomized trial of vitamin D supplementation and risk of acute respiratory infection in Mongolia. Pediatrics. 2012;130(3):e561-e567. doi:10.1542/peds.2011-3029
57) Sanders KM, Stuart AL, Williamson EJ, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA. 2010;303(18):1815-1822. doi:10.1001/jama.2010.594
58) Bischoff-Ferrari HA, Dawson-Hughes B, Orav EJ, et al. Monthly high-dose vitamin D treatment for the prevention of functional decline: a randomized clinical trial. JAMA Intern Med. 2016;176(2):175-183. doi:10.1001/jamainternmed.2015.7148
59) Schwartz JB. Effects of vitamin D supplementation in atorvastatin-treated patients: a new drug interaction with an unexpected consequence. Clin Pharmacol Ther. 2009;85(2):198-203. doi:10.1038/clpt.2008.165
60) Žofková I. Hypercalcemia. Pathophysiological aspects. Physiol Res. 2016;65(1):1-10. doi:10.33549/physiolres.933059
61) Vieth R, Chan PC, MacFarlane GD. Efficacy and safety of vitamin D3 intake exceeding the lowest observed adverse effect level. Am J Clin Nutr. 2001;73(2):288-294. doi:10.1093/ajcn/73.2.288
62) Bradley R, Schloss J, Brown D, et al. The effects of vitamin D on acute viral respiratory infections: a rapid review. Adv Integr Med. 2020;7(4):192-202. doi:10.1016/j.aimed.2020.07.011
63) Malihi Z, Lawes CMM, Wu Z, et al. Monthly high-dose vitamin D supplementation does not increase kidney stone risk or serum calcium: results from a randomized controlled trial. Am J Clin Nutr. 2019;109(6):1578-1587. doi:10.1093/ajcn/nqy378
64) Huang Z, Liu Y, Qi G, Brand D, Zheng SG. Role of vitamin A in the immune system. J Clin Med. 2018;7(9):258. doi:10.3390/jcm7090258
65) Cui D, Moldoveanu Z, Stephensen CB. High-level dietary vitamin A enhances T-helper type 2 cytokine production and secretory immunoglobulin A response to influenza A virus infection in BALB/c mice. J Nutr. 2000;130(5):1132-1139. doi:10.1093/jn/130.5.1132
66) Rodríguez A, Hamer DH, Rivera J, et al. Effects of moderate doses of vitamin A as an adjunct to the treatment of pneumonia in underweight and normal-weight children: a randomized, double-blind, placebo-controlled trial. Am J Clin Nutr. 2005;82(5):1090-1096. doi:10.1093/ajcn/82.5.1090
67) Aluisio AR, Perera SM, Yam D, et al. Vitamin A supplementation was associated with reduced mortality in patients with Ebola virus disease during the West African outbreak. J Nutr. 2019;149(10):1757-1765. doi:10.1093/jn/nxz142
68) Fawzi WW, Mbise RL, Hertzmark E, et al. A randomized trial of vitamin A supplements in relation to mortality among human immunodeficiency virus-infected and uninfected children in Tanzania. Pediatr Infect Dis J. 1999;18(2):127-133. doi:10.1097/00006454-199902000-00009
69) Bhandari N, Bhan MK, Sazawal S. Impact of massive dose of vitamin A given to preschool children with acute diarrhoea on subsequent respiratory and diarrhoeal morbidity. BMJ. 1994;309(6966):1404-1407. doi:10.1136/bmj.309.6966.1404
70) Rothman KJ, Moore LL, Singer MR, Nguyen US, Mannino S, Milunsky A. Teratogenicity of high vitamin A intake. N Engl J Med. 1995;333(21):1369-1373. doi:10.1056/NEJM199511233332101
71) Bartlett H, Eperjesi F. Possible contraindications and adverse reactions associated with the use of ocular nutritional supplements. Ophthalmic Physiol Opt. 2005;25(3):179-194. doi:10.1111/j.1475-1313.2005.00294.x
72) Bendich A, Langseth L. Safety of vitamin A. Am J Clin Nutr. 1989;49(2):358-371. doi:10.1093/ajcn/49.2.358
73) Cruz S, da Cruz SP, Ramalho A. Impact of vitamin A supplementation on pregnant women and on women who have just given birth: a systematic review. J Am Coll Nutr. 2018;37(3):243-250. doi:10.1080/07315724.2017.1364182
74) Oliveira JM, Allert R, East CE. Vitamin A supplementation for postpartum women. Cochrane Database Syst Rev. 2016;3:CD005944. doi:10.1002/14651858.CD005944.pub3
75) García-Cortés M, Robles-Díaz M, Ortega-Alonso A, Medina-Caliz I, Andrade RJ. Hepatotoxicity by dietary supplements: a tabular listing and clinical characteristics. Int J Mol Sci. 2016;17(4):537. doi:10.3390/ijms17040537
76) Bitarafan S, Saboor-Yaraghi A, Sahraian MA, et al. Effect of vitamin A supplementation on fatigue and depression in multiple sclerosis patients: a double-blind placebo-controlled clinical trial. Iran J Allergy Asthma Immunol. 2016;15(1):13-19.
77) Kowalski TE, Falestiny M, Furth E, Malet PF. Vitamin A hepatotoxicity: a cautionary note regarding 25,000 IU supplements. Am J Med. 1994;97(6):523-528. doi:10.1016/0002-9343(94)90347-6
78) Carr AC, Maggini S. Vitamin C and Immune Function. Nutrients. 2017;9(11):1211. doi:10.3390/nu9111211
79) Zabet MH, Mohammadi M, Ramezani M, Khalili H. Effect of high-dose ascorbic acid on vasopressor’s requirement in septic shock. J Res Pharm Pract. 2016;5(2):94-100. doi:10.4103/2279-042X.179569
80) Fowler AA, Truwit JD, Hite RD, et al. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure. JAMA. 2019;322(13):1261-1270. doi:10.1001/jama.2019.11825
81) Schloss J, Lauche R, Harnett J, et al. Efficacy and safety of vitamin C in the management of acute respiratory infection and disease: a rapid review. Adv Integr Med. 2020;7(4):187-191. doi:10.1016/j.aimed.2020.07.008
82) Zhang M, Jativa DF. Vitamin C supplementation in the critically ill: a systematic review and meta-analysis. SAGE Open Med. 2018;6:2050312118807615. doi:10.1177/2050312118807615
83) Vorilhon P, Arpajou B, Vaillant Roussel H, Merlin É, Pereira B, Cabaillot A. Efficacy of vitamin C for the prevention and treatment of upper respiratory tract infection. A meta-analysis in children. Eur J Clin Pharmacol. 2019;75(3):303-311. doi:10.1007/s00228-018-2601-7
84) Therapeutic Research Center. Natural Medicines Database: Vitamin C. https://naturalmedicines.therapeuticresearch.com/databases/food,-herbs-supplements/professional.aspx?productid=434#adverseEvents. Accessed September 21, 2020.
85) Food and Nutrition Board, Institute of Medicine. Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. National Academy Press. http://www.nap.edu/books/0309069351/html/. Published 2000. Accessed September 21, 2020.
86) McCarty MF, DiNicolantonio JJ. Nutraceuticals have potential for boosting the type 1 interferon response to RNA viruses including influenza and coronavirus. Prog Cardiovasc Dis. 2020;63(3):383-385. doi:10.1016/j.pcad.2020.02.007
87) De Flora S, Grassi C, Carati L. Attenuation of influenza-like symptomatology and improvement of cell-mediated immunity with long-term N-acetylcysteine treatment. Eur Respir J. 1997;10(7):1535-1541. doi:10.1183/09031936.97.10071535
88) Mokhtari V, Afsharian P, Shahhoseini M, Kalantar SM, Moini A. A review on various uses of N-acetyl cysteine. Cell J. 2017;19(1):11-17. doi:10.22074/cellj.2016.4872
89) Bauer IE, Green C, Colpo GD, et al. A double-blind, randomized, placebo-controlled study of aspirin and N-acetylcysteine as adjunctive treatments for bipolar depression. J Clin Psychiatry. 2018;80(1):18m12200. doi:10.4088/JCP.18m12200
90) Berk M, Turner A, Malhi GS, et al. A randomised controlled trial of a mitochondrial therapeutic target for bipolar depression: mitochondrial agents, N-acetylcysteine, and placebo [published correction appears in BMC Med. 2019;17(1):35]. BMC Med. 2019;17(1):18. doi:10.1186/s12916-019-1257-1
91) Clark RSB, Empey PE, Bay?r H, et al. Phase I randomized clinical trial of N-acetylcysteine in combination with an adjuvant probenecid for treatment of severe traumatic brain injury in children. PLoS One. 2017;12(7):e0180280. doi:10.1371/journal.pone.0180280
92) Bhatti J, Nascimento B, Akhtar U, et al. Systematic review of human and animal studies examining the efficacy and safety of N-acetylcysteine (NAC) and N-acetylcysteine amide (NACA) in traumatic brain injury: impact on neurofunctional outcome and biomarkers of oxidative stress and inflammation. Front Neurol. 2018;8:744. doi:10.3389/fneur.2017.00744
93) Sharafkhah M, Abdolrazaghnejad A, Zarinfar N, Mohammadbeigi A, Massoudifar A, Abaszadeh S. Safety and efficacy of N-acetyl-cysteine for prophylaxis of ventilator-associated pneumonia: a randomized, double blind, placebo-controlled clinical trial. Med Gas Res. 2018;8(1):19-23. doi:10.4103/2045-9912.229599
94) Dostal Z, Modriansky M. The effect of quercetin on microRNA expression: a critical review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2019;163(2):95-106. doi:10.5507/bp.2019.030
95) Therapeutic Research Center. Natural Medicines Database: Quercetin. https://naturalmedicines.therapeuticresearch.com/databases/food,-herbs-supplements/professional.aspx?productid=434#adverseEvents. Accessed September 21, 2020.
96) Wu W, Li R, Li X, et al. Quercetin as an antiviral agent inhibits influenza A virus (IAV) entry. Viruses. 2015;8(1):6. doi:10.3390/v8010006
97) Kinker B, Comstock AT, Sajjan US. Quercetin: a promising treatment for the common cold. J Anc Dis Prev Rem. 2014;2:2:1000111. doi:10.4172/2329-8731.1000111
98) Somerville VS, Braakhuis AJ, Hopkins WG. Effect of flavonoids on upper respiratory tract infections and immune function: a systematic review and meta-analysis. Adv Nutr. 2016;7(3):488-497. doi:10.3945/an.115.010538
99) Qiu X, Kroeker A, He S, et al. Prophylactic efficacy of quercetin 3-?-O-D-glucoside against Ebola virus infection. Antimicrob Agents Chemother. 2016;60(9):5182-5188. doi:10.1128/AAC.00307-16
100) Wong G, He S, Siragam V, et al. Antiviral activity of quercetin-3-?-O-D-glucoside against Zika virus infection. Virol Sin. 2017;32(6):545-547. doi:10.1007/s12250-017-4057-9
101) T?zsér J, Benk? S. Natural compounds as regulators of NLRP3 inflammasome-mediated IL-1? production. Mediators Inflamm. 2016;2016:5460302. doi:10.1155/2016/5460302
102) Yi YS. Regulatory roles of flavonoids on inflammasome activation during inflammatory responses. Mol Nutr Food Res. 2018;62(13):e1800147. doi:10.1002/mnfr.201800147
103) Nieman DC, Henson DA, Gross SJ, et al. Quercetin reduces illness but not immune perturbations after intensive exercise. Med Sci Sports Exerc. 2007;39(9):1561-1569. doi:10.1249/mss.0b013e318076b566
104) Andres S, Pevny S, Ziegenhagen R, et al. Safety aspects of the use of quercetin as a dietary supplement. Mol Nutr Food Res. 2018;62(1). doi:10.1002/mnfr.201700447
105) O?arowski M, Miko?ajczak P?, Kujawski R, et al. Pharmacological effect of quercetin in hypertension and its potential application in pregnancy-induced hypertension: review of in vitro, in vivo, and clinical studies. Evid Based Complement Alternat Med. 2018;2018:7421489. doi:10.1155/2018/7421489
106) Shoskes DA, Zeitlin SI, Shahed A, Rajfer J. Quercetin in men with category III chronic prostatitis: a preliminary prospective, double-blind, placebo-controlled trial. Urology. 1999;54(6):960-963. doi:10.1016/s0090-4295(99)00358-1
107) Andres S, Pevny S, Ziegenhagen R, et al. Safety aspects of the use of quercetin as a dietary supplement. Mol Nutr Food Res. 2018;62(1). doi:10.1002/mnfr.201700447
108) Adem S, Eyupoglu V, Sarfraz I, Rasul A, Ali M. Identification of potent COVID-19 main protease (Mpro) inhibitors from natural polyphenols: an in silico strategy unveils a hope against CORONA. Preprints. 2020;2020030333. doi:10.20944/preprints202003.0333.v1
109) Matsumoto K, Yamada H, Takuma N, Niino H, Sagesaka YM. Effects of green tea catechins and theanine on preventing influenza infection among healthcare workers: a randomized controlled trial. BMC Complement Altern Med. 2011;11:15. doi:10.1186/1472-6882-11-15
110) Lee HE, Yang G, Park YB, et al. Epigallocatechin-3-gallate prevents acute gout by suppressing NLRP3 inflammasome activation and mitochondrial DNA synthesis. Molecules. 2019;24(11):2138. doi:10.3390/molecules24112138
111) Furushima D, Nishimura T, Takuma N, et al. Prevention of acute upper respiratory infections by consumption of catechins in healthcare workers: a randomized, placebo-controlled trial. Nutrients. 2019;12(1):4. doi:10.3390/nu12010004
112) Mereles D, Hunstein W. Epigallocatechin-3-gallate (EGCG) for clinical trials: more pitfalls than promises? Int J Mol Sci. 2011;12(9):5592-5603. doi:10.3390/ijms12095592
113) Chow HH, Cai Y, Hakim IA, et al. Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clin Cancer Res. 2003;9(9):3312-3319.
114) Isomura T, Suzuki S, Origasa H, et al. Liver-related safety assessment of green tea extracts in humans: a systematic review of randomized controlled trials [published correction appears in Eur J Clin Nutr. 2016;70(11):1221-1229]. Eur J Clin Nutr. 2016;70(11):1340. doi:10.1038/ejcn.2016.78
115) Sarma DN, Barrett ML, Chavez ML, et al. Safety of green tea extracts: a systematic review by the US Pharmacopeia. Drug Saf. 2008;31(6):469-484. doi:10.2165/00002018-200831060-00003
116) Oketch-Rabah HA, Roe AL, Rider CV, et al. United States Pharmacopeia (USP) comprehensive review of the hepatotoxicity of green tea extracts. Toxicol Rep. 2020;7:386-402. doi:10.1016/j.toxrep.2020.02.008
117) Younes M, Aggett P, Aguilar F, et al. Scientific opinion on the safety of green tea catechins. EFSA J. 2018;16(4):e05239. doi:10.2903/j.efsa.2018.5239
118) Isomura T, Suzuki S, Origasa H, et al. Liver-related safety assessment of green tea extracts in humans: a systematic review of randomized controlled trials [published correction appears in Eur J Clin Nutr. 2016;70(11):1340]. Eur J Clin Nutr. 2016;70(11):1221-1229. doi:10.1038/ejcn.2016.78
119) Dostal AM, Samavat H, Bedell S, et al. The safety of green tea extract supplementation in postmenopausal women at risk for breast cancer: results of the Minnesota Green Tea Trial. Food Chem Toxicol. 2015;83:26-35. doi:10.1016/j.fct.2015.05.019
120) Chen IJ, Liu CY, Chiu JP, Hsu CH. Therapeutic effect of high-dose green tea extract on weight reduction: a randomized, double-blind, placebo-controlled clinical trial. Clin Nutr. 2016;35(3):592-599. doi:10.1016/j.clnu.2015.05.003
121) Yates AA, Erdman JW Jr, Shao A, Dolan LC, Griffiths JC. Bioactive nutrients – time for tolerable upper intake levels to address safety. Regul Toxicol Pharmacol. 2017;84:94-101. doi:10.1016/j.yrtph.2017.01.002
122) Menegazzi M, Campagnari R, Bertoldi M, Crupi R, Di Paola R, Cuzzocrea S. Protective effect of epigallocatechin-3-gallate (EGCG) in diseases with uncontrolled immune activation: could such a scenario be helpful to counteract COVID-19?. Int J Mol Sci. 2020;21(14):5171. doi:10.3390/ijms21145171
123) Hu J, Webster D, Cao J, Shao A. The safety of green tea and green tea extract consumption in adults – results of a systematic review. Regul Toxicol Pharmacol. 2018;95:412-433. doi:10.1016/j.yrtph.2018.03.019
124) Khaerunnisa S, Kurniawan H, Awaluddin R, Suhartati S, Soetjipto S. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints. 2020, 2020030226. doi:10.20944/preprints202003.0226.v1
125) Sun Y, Liu W, Zhang H, et al. Curcumin prevents osteoarthritis by inhibiting the activation of inflammasome NLRP3. J Interferon Cytokine Res. 2017;37(10):449-455. doi:10.1089/jir.2017.0069
126) Yin H, Guo Q, Li X, et al. Curcumin suppresses IL-1? secretion and prevents inflammation through inhibition of the NLRP3 inflammasome. J Immunol. 2018;200(8):2835-2846. doi:10.4049/jimmunol.1701495
127) Gong Z, Zhao S, Zhou J, et al. Curcumin alleviates DSS-induced colitis via inhibiting NLRP3 inflammsome activation and IL-1? production. Mol Immunol. 2018;104:11-19. doi:10.1016/j.molimm.2018.09.004
128) Zhao J, Wang J, Zhou M, Li M, Li M, Tan H. Curcumin attenuates murine lupus via inhibiting NLRP3 inflammasome. Int Immunopharmacol. 2019;69:213-216. doi:10.1016/j.intimp.2019.01.046
129) Kunnumakkara AB, Bordoloi D, Padmavathi G, et al. Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. Br J Pharmacol. 2017;174(11):1325-1348. doi:10.1111/bph.13621
130) Chainani-Wu N. Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med. 2003;9(1):161-168. doi:10.1089/107555303321223035
131) Ng QX, Koh SSH, Chan HW, Ho CYX. Clinical use of curcumin in depression: a meta-analysis. J Am Med Dir Assoc. 2017;18(6):503-508. doi:10.1016/j.jamda.2016.12.071
132) Ng QX, Soh AYS, Loke W, Venkatanarayanan N, Lim DY, Yeo WS. A meta-analysis of the clinical use of curcumin for irritable bowel syndrome (IBS). J Clin Med. 2018;7(10):298. doi:10.3390/jcm7100298
133) Bahramsoltani R, Rahimi R, Farzaei MH. Pharmacokinetic interactions of curcuminoids with conventional drugs: a review. J Ethnopharmacol. 2017;209:1-12. doi:10.1016/j.jep.2017.07.022
134) Xu J, Qiu JC, Ji X, et al. Potential pharmacokinetic herb-drug interactions: have we overlooked the importance of human carboxylesterases 1 and 2? Curr Drug Metab. 2019;20(2):130-137. doi:10.2174/1389200219666180330124050
135) Coelho MR, Romi MD, Ferreira DMTP, Zaltman C, Soares-Mota M. The use of curcumin as a complementary therapy in ulcerative colitis: a systematic review of randomized controlled clinical trials. Nutrients. 2020;12(8):2296. doi:10.3390/nu12082296
136) Cheng AL, Hsu CH, Lin JK, et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001;21(4B):2895-2900.
137) Amalraj A, Varma K, Jacob J, et al. A novel highly bioavailable curcumin formulation improves symptoms and diagnostic indicators in rheumatoid arthritis patients: a randomized, double-blind, placebo-controlled, two-dose, three-arm, and parallel-group study. J Med Food. 2017;20(10):1022-1030. doi:10.1089/jmf.2017.3930
138) Favero G, Franceschetti L, Bonomini F, Rodella LF, Rezzani R. Melatonin as an anti-inflammatory agent modulating inflammasome activation. Int J Endocrinol. 2017;2017:1835195. doi:10.1155/2017/1835195
139) Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020;6:14. doi:10.1038/s41421-020-0153-3
140) Zhang R, Wang X, Ni L, et al. COVID-19: melatonin as a potential adjuvant treatment. Life Sci. 2020;250:117583. doi:10.1016/j.lfs.2020.117583
141) Foley HM, Steel AE. Adverse events associated with oral administration of melatonin: a critical systematic review of clinical evidence. Complement Ther Med. 2019;42:65-81. doi:10.1016/j.ctim.2018.11.003
142) Andersen LP, Gögenur I, Rosenberg J, Reiter RJ. The safety of melatonin in humans. Clin Drug Investig. 2016;36(3):169-175. doi:10.1007/s40261-015-0368-5
143) Herxheimer A, Petrie KJ. Melatonin for the prevention and treatment of jet lag. Cochrane Database Syst Rev. 2002;2:CD001520. doi:10.1002/14651858.CD001520
144) Leite Pacheco R, de Oliveira Cruz Latorraca C, Adriano Leal Freitas da Costa A, Luiza Cabrera Martimbianco A, Vianna Pachito D, Riera R. Melatonin for preventing primary headache: a systematic review. Int J Clin Pract. 2018;72(7):e13203. doi:10.1111/ijcp.13203
145) Abdelgadir IS, Gordon MA, Akobeng AK. Melatonin for the management of sleep problems in children with neurodevelopmental disorders: a systematic review and meta-analysis. Arch Dis Child. 2018;103(12):1155-1162. doi:10.1136/archdischild-2017-314181
146) Besag FMC, Vasey MJ, Lao KSJ, Wong ICK. Adverse events associated with melatonin for the treatment of primary or secondary sleep disorders: a systematic review. CNS Drugs. 2019;33(12):1167-1186. doi:10.1007/s40263-019-00680-w
147) Harpsøe NG, Andersen LP, Gögenur I, Rosenberg J. Clinical pharmacokinetics of melatonin: a systematic review. Eur J Clin Pharmacol. 2015;71(8):901-909. doi:10.1007/s00228-015-1873-4
148) Wirtz PH, Spillmann M, Bärtschi C, Ehlert U, von Känel R. Oral melatonin reduces blood coagulation activity: a placebo-controlled study in healthy young men. J Pineal Res. 2008;44(2):127-133. doi:10.1111/j.1600-079X.2007.00499.x
149) McGlashan EM, Nandam LS, Vidafar P, Mansfield DR, Rajaratnam SMW, Cain SW. The SSRI citalopram increases the sensitivity of the human circadian system to light in an acute dose. Psychopharmacology (Berl). 2018;235(11):3201-3209. doi:10.1007/s00213-018-5019-0
150) Sánchez-López AL, Ortiz GG, Pacheco-Moises FP, et al. Efficacy of melatonin on serum pro-inflammatory cytokines and oxidative stress markers in relapsing remitting multiple sclerosis. Arch Med Res. 2018;49(6):391-398. doi:10.1016/j.arcmed.2018.12.004
151) Mesri Alamdari N, Mahdavi R, Roshanravan N, Lotfi Yaghin N, Ostadrahimi AR, Faramarzi E. A double-blind, placebo-controlled trial related to the effects of melatonin on oxidative stress and inflammatory parameters of obese women. Horm Metab Res. 2015;47(7):504-508. doi:10.1055/s-0034-1384587
152) Brisdelli F, D’Andrea G, Bozzi A. Resveratrol: a natural polyphenol with multiple chemopreventive properties. Curr Drug Metab. 2009;10(6):530-546. doi:10.2174/138920009789375423
153) Lin SC, Ho CT, Chuo WH, Li S, Wang TT, Lin CC. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect Dis. 2017;17(1):144. doi:10.1186/s12879-017-2253-8
154) Mendes da Silva D, Gross LA, Neto EPG, Lessey BA, Savaris RF. The use of resveratrol as an adjuvant treatment of pain in endometriosis: a randomized clinical trial. J Endocr Soc. 2017;1(4):359-369. doi:10.1210/js.2017-00053
155) Shaito A, Posadino AM, Younes N, et al. Potential adverse effects of resveratrol: a literature review. Int J Mol Sci. 2020;21(6):2084. doi:10.3390/ijms21062084
156) Salehi B, Mishra AP, Nigam M, et al. Resveratrol: a double-edged sword in health benefits. Biomedicines. 2018;6(3):91. doi:10.3390/biomedicines6030091
157) Patel KR, Scott E, Brown VA, Gescher AJ, Steward WP, Brown K. Clinical trials of resveratrol. Ann N Y Acad Sci. 2011;1215:161-169. doi:10.1111/j.1749-6632.2010.05853.x
158) Brantley SJ, Argikar AA, Lin YS, Nagar S, Paine MF. Herb-drug interactions: challenges and opportunities for improved predictions. Drug Metab Dispos. 2014;42(3):301-317. doi:10.1124/dmd.113.055236
159) European Food Safety Authority. Safety of synthetic trans-resveratrol as a novel food pursuant to Regulation (EC) No 258/97. EFSA J. 2016;14:1-30. doi:10.2903/j.efsa.2016.4368
160) Turner RS, Thomas RG, Craft S, et al. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology. 2015;85(16):1383-1391. doi:10.1212/WNL.0000000000002035
161) Berman AY, Motechin RA, Wiesenfeld MY, Holz MK. The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol. 2017;1:35. doi:10.1038/s41698-017-0038-6
162) McDermott MM, Leeuwenburgh C, Guralnik JM, et al. Effect of resveratrol on walking performance in older people with peripheral artery disease: the RESTORE randomized clinical trial. JAMA Cardiol. 2017;2(8):902-907. doi:10.1001/jamacardio.2017.0538
163) Anton SD, Embry C, Marsiske M, et al. Safety and metabolic outcomes of resveratrol supplementation in older adults: results of a twelve-week, placebo-controlled pilot study. Exp Gerontol. 2014;57:181-187. doi:10.1016/j.exger.2014.05.015
Look below to find the times and links to our weekly webinars....
What is the Chronic Disease Support program?
1. It is a weekly live, interactive, 1h, webinar on Zoom covering important health-related topics.
2. The schedule is Mondays at 12 noon EST and Tuesday at 8 pm EST. The topic is the same at both times/dates. We offer 2 times per week to accommodate schedules.
Monday Zoom link (noon EST):
Tuesday Zoom link (8pm EST):
copy and paste to your browser at the designed time to join.
Archived videos are found at https://www.youtube.com/channel/UCd_LYVg22017AkE1GfKa4_A
Stay Well
Bình luận